Neural Defence

We have used a long short-term memory (LSTM) neural network as a basic architecture. The text, its' author and phonetics obtained with special heuristics were used as the inputs. The neural network was building vector representations of letters, words, sounds, authors and their poems in order to predict every next word.

The learning data-set is approx. 130 Mb of Russian classical poetry and Russian song lyrics. The neural network was reading the poems in a random order, reading every poem from 10 to 15 times on average. It has learned approximately 400 000 words that were used in the studied poems and also obtained certain compatibility of the words that could be regarded as some kind of a morphology model. The network also tried to learn specific features of every author. The more poems of a given author there were in the data-set the better it was "understood" by the network.

You can listen to the whole album on Apple Music or Google Music.